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Absolute Spin Magnetic Moment of FeF2 from High Energy Photon Diffraction
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The magnetic spin structure factor of FeF2 has been directly determined from high energy magnetic
x-ray diffraction at 115 keV photon energy. A pure spin moment of m � 4.01�5�mB was observed,
which agrees very well with the spin moment of the free Fe21 ion and differs significantly from values
of the total magnetic moment obtained by other methods. The magnetic phase transition of FeF2 has
been carefully investigated and values for the critical exponent of the order parameter obtained by other
techniques have been confirmed.
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The separation of the spin and orbital contribution to
the magnetic moment in magnetic materials has for a long
time been a challenge in experimental condensed-matter
physics. The separate knowledge of both components pro-
vides important information about spin-orbit and Coulomb
interactions and crystal field effects in the solid. In the
last years new methods using x rays have been developed
which offer great opportunities in this direction.

For antiferromagnets, a separate determination of spin
and orbital moment can be performed in the medium en-
ergy range of x-ray diffraction using polarization analy-
sis. The rather complicated polarization dependence of the
magnetic scattering cross section allows the determination
of the L�S ratio as a function of the momentum transfer.
Results from this technique have been published for dif-
ferent materials [1–4]. For ferromagnetic materials other
methods exist such as magnetic x-ray circular dichroism
(MXCD) [5–7], which strongly rely on theoretical models
available, or x-ray diffraction using circularly polarized
x rays [8,9].

Here, we present results of a magnetic diffraction ex-
periment on antiferromagnetic FeF2 with 115 keV pho-
tons, where the magnetic scattering cross section depends
only on the spin component perpendicular to the diffraction
plane and which is independent from the polarization of the
x rays. This allows one to measure the absolute spin mag-
netic moment without polarization analysis. Combined
with antiferromagnetic resonance and neutron diffraction
results found in the literature [10,11], this method can
be used to determine the spin and orbital contribution to
the magnetic moment separately and model free. In ad-
dition, at these energies correction factors for absorption
and polarization are negligible due to the small scattering
angles. The method of high energy magnetic x-ray diffrac-
tion has been developed on MnF2 [12–15] during the last
few years.

Recently, an attempt has been undertaken to perform a
spin-orbit separation on chromium [16] for which the or-
bital moment is very small. Because of the fact that the
magnetic domains are not equally distributed in chromium,
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an absolute determination of the magnetic moment was not
possible. Instead, the Q dependence of the magnetic form
factor was used. This turned out not to be as precise as
the other methods for the L�S separation since the Q de-
pendence of the magnetic spin- and orbital form factor are
very similar. A more precise way of determining the pure
spin form factor is the determination of the absolute mag-
netic spin moment. Previous work on a system without a
contribution to the orbital momentum [15] has shown that
an absolute determination of the magnetic moment is pos-
sible with nonresonant magnetic x-ray diffraction. This
method is used in the present work on FeF2. The crystal
field quenching of the orbital momentum in this material
is partially lifted by the LS coupling and an orbital contri-
bution to the magnetic moment of about 12% is expected
[10,11].

The differential scattering cross section for magnetic
diffraction for high photon energies above 80 keV takes
the following simple form [13]:
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where r0 is the classical electron radius, lC the Comp-
ton wavelength, d the interplanar lattice spacing, and S�

the Fourier transform of the spin component perpendicular
to the diffraction plane. Because of the small prefactors
in Eq. (1) and the small ratio of the number of electrons
contributing to the magnetic signal to the total number of
electrons in the unit cell, the magnetic signal is 6 orders of
magnitude smaller than the signal from charge scattering.
For nonzero Q values, the next significant contributions
arise from spin and orbital contributions in the scattering
plane perpendicular to the scattering vector. These are in-
significant in our scattering geometry due to the experi-
mental configuration. In addition these contributions are
suppressed by sinu with respect to S� in the scattering
cross section [14]. The validity of Eq. (1) for energies
larger than 100 keV has been demonstrated experimen-
tally [15] and later confirmed theoretically [17]. Hence,
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no orbital contribution to the magnetic signal occurs by
this method. For neutrons, the diffracted intensity is pro-
portional to the linear combination �L� �Q� 1 2 �S� �Q� of both
the Fourier transforms of the spin � �S� �Q�� and orbital an-
gular � �L� �Q�� momentum. Thus, by combining the results
of high energy x-ray and neutron diffraction experiments,
orbital and spin contributions can be separated without fur-
ther theoretical assumptions.

To perform a reliable separation of spin and orbital con-
tributions, the absolute intensity, and therefore the absolute
magnetic moment, have to be determined very accurately.
The magnetic intensity was put on absolute scale by nor-
malization to the intensity of the charge scattering. The
corresponding structure factors are known very accurately
from g-ray diffraction experiments [18]. Although the in-
tensity of the charge and magnetic reflections differs con-
siderably, this method can give results with a precision of
better than 2%.

The experiment was conducted at the wiggler beam line
of BESSRC-CAT at the Advanced Photon Source at Ar-
gonne National Laboratory [19]. As a monochromator
an annealed Silicon-(311) crystal used in Laue-geometry
(u � 1.9±, Dl�l � 0.003) was chosen to diffract the wig-
gler beam into the experimental hutch providing a photon
energy of 115 keV.

The sample was a prism shaped single crystal with a vol-
ume of 12 mm3. The 1 3 1 mm2 x-ray beam penetrated a
sample thickness of 3.8(2) mm. The sample was mounted
in a closed-cycle He cryostat with the c axis oriented per-
pendicular to the diffraction plane. FeF2 has a rutile-type
crystal structure with space group P42�mnm and lattice
constants of a � 4.6933 Å and c � 3.3007 Å at 11 K
[18]. Thus, due to the fact that the magnetic moments in
FeF2 are aligned along the c axis of the tetragonal unit cell,
the total magnetic spin moment was obtained by aligning
the �001� plane in the diffraction plane [see Eq. (1)]. The
thermal coupling of the sample to the sample holder was
improved by surrounding the sample with heat-conducting
grease. The temperature sensor was mounted on the
sample holder as close as possible to the sample. The
total mosaic spread was observed to be about 80 arcsec
and the reflections are from two domains, both with a
width of about 45 arcsec. The maximum intensity of the
magnetic (100) reflection was 6000 cps over a background
of 500 cps, as shown in Fig. 1. In addition to the magnetic
reflections at the (2n 1 1 0 0) positions in reciprocal
space multiple diffraction (Renninger) effects may occur
at these positions as well. Therefore, C scans (rotation
of the scattering plane around the scattering vector) were
performed to find regions which are free of Renninger
reflections. The scans used to determine the intensity of
the magnetic reflections were performed at different C

positions to confirm the reproducibility of the magnetic
intensities. The data have been normalized to the signal
of a photodiode monitoring the incident beam.

At the magnetic phase transition, the critical behavior
was measured to ensure that the signal at low tempera-
T=80 K
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FIG. 1. Rocking curve of the magnetic (100) reflection. The
solid circles show the reflection at 12 K; the open circles show
a scan above the phase transition.

tures was purely magnetic. In addition, the critical region
was investigated carefully. The measurements were per-
formed on the magnetic (300) reflection. A power law for
the reduced sublattice magnetization as a function of re-
duced temperature, m � tb , was fit to the data in the tem-
perature range between 70 and 75 K resulting in a critical
exponent of b � 0.329�18� (Fig. 2). This value agrees
very well with the b � 0.325�5� obtained from NMR
measurements [20] and Mössbauer spectroscopy [21]. It
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FIG. 2. The main graph shows the sublattice magnetization de-
rived from the magnetic (300) reflection of FeF2 as a function
of temperature. The inset shows the reduced sublattice mag-
netization m � m�T��m�0� as a function of the reduced tem-
perature t � �1 2 T�TN � in double logarithmic scale. The line
shows the fit of a power law to the magnetization as described in
the text.
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is in perfect agreement with the value calculated for the
3D Ising model: b � 0.326. The Néel temperature of
TN � 75.8 K is 2.3 K lower than determined in [20,21].
This difference, however, does not affect the determina-
tion of the critical exponent b, because only the reduced
temperature t is relevant.

Magnetic intensities were measured at the positions
(100), (300), and (500). The magnetic structure factor
was calculated according to the following equation:

jFmj
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2 yext
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, (2)

where Im is the integrated magnetic intensity, Ic is the in-
tegrated intensity of the charge reflections, and um and uc

are the Bragg angles of the magnetic and the charge reflec-
tions, respectively. Fc is the charge density structure factor
including the Debye-Waller factor, yext the corresponding
extinction coefficient, and Wm the Debye-Waller factor of
the magnetic reflection.

A correction for absorption within the sample is negli-
gible since both the magnetic reflection and the charge re-
flections used for normalization are measured in virtually
the same geometry. Because of the high photon energies,
these reflections are less than 3± apart in the rotation of the
sample which has very little effect on the absorption. The
absorption length for 115 keV photons in the FeF2 crystal
is 11.2 mm. The structure factors of the charge reflections
were obtained by g-ray experiments at 11 K [18].

Since the magnetic signal is 6 orders of magnitude
smaller than the charge signal, diffraction can be described
within the kinematic regime. Therefore, no extinction
correction is necessary for the magnetic reflections. For
the charge reflections, which are used to normalize the
data, a correction for extinction must be performed.
Because of the limited dynamic range of the germanium
solid-state detector, the charge intensity has been mea-
sured using calibrated iron filters. A dead time correction
with t � 3.5 ms was applied for the counting chain.
The absorption coefficient mabs � 0.2203�2� mm21 of
the iron filters for E � 115 keV has been determined
experimentally. The intrinsic width of the rocking curve
is 45(3) arcsec, which has been used to determine the
extinction coefficient. The smallest extinction factor,
obtained for the (400) reflection was yext � 0.85�1� as
calculated from Zachariasen’s theory [22]. The extinction
factors have been calculated under consideration of the
statistical errors of the rocking curve width, the structure
factor of the respective charge reflection, and the error in
crystal thickness.

Equation (2) was used for the calculation of the mag-
netic structure factor for the magnetic (100) and (300) re-
flections. The mean value of the (200) and (400) charge
reflection intensities was taken to normalize the magnetic
intensities. The magnetic structure factors Fm are shown
in Table I with their statistical errors. The (100) and (300)
could be measured very reliably. At the (500) position the
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TABLE I. The measured magnetic structure factor Fm as de-
rived without correction for the zero-point motion is given. For
the (100) and (300) reflections the corresponding corrected mag-
netic moment mcorr is shown together with the mean magnetic
moment m.

Reflection sinu�l �Å21� Fm �mB� mcorr �mB� m �mB�

(100) 0.1065 3.522(57) 4.027(65)
(300) 0.3196 1.605(28) 3.992(70) 4.01(5)
(500) 0.5327 0.548(98)

Renninger reflections were dominant, resulting in a large
systematic error for this reflection. Therefore, the (500)
reflection has not been considered in the further discus-
sion. The magnetic moment has been extrapolated using
the magnetic form factors from [23] for the (100) and (300)
reflections, only. To calculate the absolute magnetic mo-
ment, the zero-point motion of the magnetic moment has to
be considered [24]. The correction to the spin moment has
been calculated as �S�0 � 0.98S by Ohlmann and Tinkham
for FeF2 [10]. The result obtained after this correction
mcorr is also given in Table I together with the mean value
of the magnetic moment m from both the (100) and the
(300) reflection. The absolute structure-factor dependence
for all three magnetic reflections, corrected for zero-point
motion, is shown in Fig. 3 as a function of sinu�l together
with 2S� j0�Q��, using the theoretical value for the spin
S � 2. Here, � jl�Q�� denotes a volume integral of the
lth-order spherical Bessel function jl�Q� [23]. The mag-
netic structure factor for a neutron diffraction experiment
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FIG. 3. The measured absolute magnetic structure factor
Fhkl � 2Sfmag is shown as a function of sinu�l. The solid
points show the experimental data of the (100), (300), and
(500) reflections. The solid line shows the pure spin form factor
2S� j0�, whereas the dashed line shows the signal expected
by neutron diffraction 2S�� j0� 1 0.12�� j0� 1 � j2��� where an
orbital contribution of 12% is assumed.
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is [25]:

Fn
m�Q� � gzSf�Q�

� 2S�� j0�Q��
1 �gz�2 2 1� �� j0�Q�� 1 � j2�Q���� (3)

with the gyromagnetic ratio gz � �0jLz 1 2Szj0��Sz ,
where j0� denotes the ground state wave function. The
value obtained by Ohlmann and Tinkham by antiferro-
magnetic resonance is gz � 2.25�5� [10]. A more recent
polarized neutron diffraction experiment gives gz � 2.23
[11]. Both experimental results differ slightly from the
first neutron diffraction result by Erickson who obtained
gz � 2.31 [26]. The value of the gyromagnetic ratio
is equivalent to an orbital contribution of about 12% to
the total magnetic moment. This corresponds to a total
magnetic moment of 4.46mB for the polarized neutron
diffraction result. The corresponding magnetic structure
factor Fn

m�Q� as a function of sinu�l from Eq. (3) is
shown in Fig. 3, too. The values are considerably higher
than the pure spin structure factor.

Our result for the pure magnetic spin moment of m �
4.01�5�mB supports the assumption that in FeF2 the spin is
S � 2 as in the free ion Fe21, which would be equivalent
to a g factor of 2. Therefore, the additional 12% measured
by other methods is of purely a orbital nature. There is no
evidence for a reduction of the magnetic moment due to
covalence effects as is discussed in [11].

For the first time, a spin-orbit separation was performed
with high-energy x rays in combination with results
obtained by other methods, e.g., neutron diffraction and
antiferromagnetic resonance, on a system that shows a
significant orbital momentum. In other studies done with
these methods before, the system either has not shown
an orbital contribution, or a separation was problematic
because of the nonuniform distribution of the magnetic
domains in the crystal. Since the form factor as a function
of Q for the pure spin on the one hand and for spin and
orbital contribution on the other are very similar in form,
the obtained information about the absolute magnetic
form factor is essential for a precise separation. Our result
underlines the reliability of this method and shows clearly
that such a separation is possible to a precision better than
2%. For future measurements it will be very important to
look at other materials such as metallic transition metal
compounds or rare-earth metals, where the pure spin
moment in the crystal differs from the moment of the free
atom.
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